Huffman coding

- prefix-free cole syublorl length is given a-prion (see kraft inge.) $E_{x}: l_{i} \in\{1,2,3,3\}$

Q: why $\{1,2,3,3\}$ and $\operatorname{mot}\{2,2,2,2\}$?
Q : which suva gyubol shall be assigned when?
\rightarrow this should reflect the entropy (α, p_{i})
Ex:
\longrightarrow optimal:
Ex:

Huff. c. works wall on for these!!

Huffmamn coding

- prodemus:
a) optimality
b) 2-pass apploach paiss *1, defermine pi (sarce aymber pass\#2. encode
\Rightarrow adaptive Huffuman coding start wih a-phovi distubutith and upate it on-line \rightarrow re-construction of Hufflman tree
c) it is spmbol-based in English: 'the', ' a ', 'is', ' $2 u$ ' are very freguent

Avithmetic coding
arbitrany precisiow arrithumelic
idea: Represent the message as a vational number and represent this vatimal number in binayy avithmetic on $[0,1]$

$$
\begin{gathered}
\frac{11}{16}=\frac{1}{2}+\frac{0}{4}+\frac{1}{8}+\frac{1}{16} \\
0.1011
\end{gathered}
$$

a) $\frac{a}{b}$... a fractiru veppresuting the message
b) look for au interval in $[0,1]$ where $\frac{a}{b}$ lies by binary seauch (bisechiru)
\rightarrow,bracket' $E_{x:}(0,1)_{10} \equiv(0.0001)_{2} \in\left[\frac{1}{16} 1 \frac{2}{16}\right]$ and $(0.2)_{10} \in\left[\frac{2}{16} . \frac{3}{16}\right]^{2}$

this is the repressutation of $A B B C B A$
now: find a binary fraction $\frac{x}{2^{k}}$ such that

$$
\frac{x}{2^{k}} \in\left(\frac{129}{729}, \frac{130}{729}\right)
$$

It he 'surest' cue"
the binary string representing the fraction is the encoded message!

$$
\begin{array}{ll}
\text { is the encoded message! } \\
\frac{129}{729}=0.17695<\frac{x}{2 k}<0.17832=\frac{120}{729}> & k=7 \cdot \frac{22}{128}<0.176, \frac{28}{120}>0.178 \times \\
k=1: \frac{1}{2}>0.17 \times & k=8: \frac{45}{256}<0.176 \frac{46}{256}>0.178 \times \\
k=2: \frac{1}{4}>0.17 \times & k=9: \frac{91}{512}>0.1761 \frac{91}{512}<0.178 \mathrm{~V}
\end{array}
$$

binary rep. of $\frac{91}{512}=\frac{1}{8}+\frac{1}{32}+\frac{1}{64}+\frac{1}{256}+\frac{1}{512} \Rightarrow 0.001011011$

