# Signals and codes homework assignment: part 1 (signals) 

This document describes homework assignment in course Signals and codes, taught at Faculty of transportation sciences of Czech technical university in Prague.

## 1 General information

### 1.1 Formal requirements for submission

- The homework is assigned and collected electronically. You could bring it on paper for review or consultation during semester but to be "evaluated" it shall be sent by an email!
- Form of the homework is one pdf document of reasonable size, maximum 5 MB . Most exercises are possible to solve by hand calculation, in such case please scan respective paper(s). In case you use computational SW, copy the source code and the results. You can also combine hand and computer calculations, but please be sure that you are answering correctly the posed question(s).
- Preferably all exercises are in one document, but in case of different dates of hand out or corrections just sent the actual (corrected / new) parts.
- Header and footer of the document shall contain information about course / year / student / version / date / page number / total pages


### 1.2 Submission date

The deadline for submission is the end of the semester or exam date at the latest.

### 1.3 Scoring

Scoring is stated for each exercise separately, a total score for part 1 is 5 points.

## 2 Signals exercises

### 2.1 Signals fundamentals: power and energy [1 point]

Compute energy $E$, power $P$ and effective value $X_{\text {RMS }}$ and decide whether the signals are energy or power ones for following signals:
a) $x(t)=\left\{\begin{array}{l}5 \text { for }|t|<8 \\ 0 \text { otherwise }\end{array}\right.$
b) $x[n]=3 j$
c) $x(t)=3 \cos \left(10 t+\frac{\pi}{4}\right)$

### 2.2 Spectrum of sinusoid combination [1 point]

a) A signal composed of sinusoids is given by the equation $x(t)=4 \cos (30 \pi t+\pi / 8)-5 \cos (150 \pi t-\pi / 6)$. Sketch the spectrum of this signal indicating the complex amplitude of each frequency component. You do not have to make separate plots for real/imaginary parts or magnitude/phase. Just indicate the complex amplitude value at the appropriate frequency.
b) Is $x(t)$ periodic? If so, what is the fundamental period? If not, why not? Which harmonics are present?
c) Now consider a new signal $y(t)=x(t)+7 \cos (140 \pi t-\pi / 3)$. How is the spectrum changed? Is $y(t)$ periodic? If so, what is the fundamental period? If not, why not?
d) Finally, consider another new signal $z(t)=x(t)+\cos (100 \sqrt{2} \pi t)$. How is the spectrum changed? Is $z(t)$ periodic? If so, what is the fundamental period? If not, why not?

### 2.3 Spectrum of AM modulation [1 point]

The signal $x(t)$ is formed from the signal $v(t)$ by AM modulation. Assume that $v(t)=3+3 \cos (5 \pi t+\pi / 3)$ and that $x(t)=v(t) \cos (40 \pi t)$.
a) Find an additive combination for $x(t)$. Hint: you can use inverse Euler formula and phasors.
b) Count the number of frequency components in the spectrum.
c) What is the highest frequency contained in spectrum of $x(t)$ ?
d) Draw the spectrum for $v(t)$.
e) Draw the spectrum for $x(t)$.

### 2.4 Fourier analysis and synthesis [1 points]

For each signal $x_{1}(t)$ below perform the following tasks:

- Find and plot the spectrum of $x_{1}(t)$ containing complex amplitudes $\left\{a_{k}\right\}$ of zero frequency $(D C)$ and first 10 harmonics components using Fourier analysis. You can just indicate the complex amplitude value at the appropriate frequency or you can plot magnitudes of $\left\{a_{k}\right\}$ in one figure and phases of $\left\{a_{k}\right\}$ in another figure.
- Verify the result using Fourier synthesis, denote the synthesized signal as $x_{2}(t)$. Plot original signal $x_{1}(t)$ and synthesized one $x_{2}(t)$ as a proof and explain possible differences.
Assigned signals $x_{1}(t)$ are as follows:
a) $\quad x_{1}(t)=4+5 \cos (2000 \pi t)-3 \cos (10000 \pi t-\pi / 2)+\cos (30000 \pi t+\pi / 4)$
b) $\quad x_{1}(t)=\left\{\begin{array}{l}5 \text { for } 0<t<\frac{T_{0}}{6} \\ 0 \text { for } \frac{T_{0}}{6} \leq t \leq T_{0}\end{array}\right.$
c) $\quad x_{1}(t)$ is measured with sample frequency 10 kHz , within one period the acquired values are 7.0414,7.4181,7.7236,7.6214,7.9421,7.7418,8.3632,7.6065,8.1854,7.773,7.4936,8.1571,7.3248,8.0385, 7.1882,7.8389,6.9353,7.0739,6.9727,7.3815,6.8697,6.7899,6.7419,7.1694,7.2514,6.82,7.0226,7.1713,7. $1131,7.5349,7.6253,7.3983,7.6361,7.6327,7.2404,7.799,7.4436,7.6382,7.8365,8.4287,8.1138,8.1044,7$. 8887,8.0211,7.526,7.9071,7.6476,6.9788,6.7861,7.18,6.6098,6.526,5.8161,5.6668,5.3885,4.6279,4.451 $8,3.8674,3.4975,3.1939,2.6858,2.1569,2.0489,2.0185,1.433,0.44003,0.12847,-0.17428,0.10781,-$ $0.54016,-0.58022,-0.58019,-1.2781,-0.6798,-0.71825,-1.2032,-0.83908,-1.1132,-1.1126,-0.15857,-$ $0.16194,-0.10264,0.52905,0.52475,0.91019,1.3984,1.6841,2.5549,3.3045,3.6807,4.1233,4.3275$, 4.9716,4.5474,5.0633,5.3923,6.1027,6.1478,7.1119,6.5245

Hint: using appropriate computational $S W$ to solve this exercise is recommended.

### 2.5 Sampling and aliasing: Waveform reconstruction [1 point]

Consider AM signal from exercise 2.3. When sampling this signal in AD converter with sample frequency $f_{s}$ we get the discrete-time signal $x[n]$. When reconstructing the signal $x[n]$ in DA converter with sample frequency $f_{s}$ we get the continuous-time signal $y(t)$. Assume that $f_{s}=10 \mathrm{~Hz}$.

a) Find expression for $x[n]$.
b) Plot spectrum of $x[n]$.
c) Find expression for $y(t)$.
d) Plot spectrum of $y(t)$.
e) What is theoretically the least possible sample frequency $f_{s}$ for possibility of correct reconstruction of the signal $x(t)$ ?

