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Introduction
Source encoding: Remove rendunant information.
Channel coding: Protect data against transmission errors.

Medium: Controlled redundancy (increase message entropy).

Always block codes
Linear codes

I Repetition code
I Hamming code
I BCH
I LDPC (Gallager, 1963)
I Cyclic codes (Reed-Solomon)

Other approaches:
I Convolution codes
I Turbo codes



Problem 1

1. Assume a repetition code of block length n (n is odd) being
used to transmit data over BSC with crossover probability ε
with simple majority vote decoding.

2. Determine the probability of uncorrected error in a block of
length n

2.1 we will decode an incorrect bit if more than (n + 1)/2 bits of
the code word are corrupted

2.2 given ε, probability that all k bits, k < n, will flip is
εk(1− ε)n−k

2.3 given k , the total number of combinations containing k flipped
bits a binomic number

2.4 we have to sum for every possible k from (n + 1)/2 up to n,
hence

p(n, ε) =
n∑

k=(n+1)/2

(
n

k

)
εk(1− ε)n−k .
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Problem 1 continued

3. Create function rcbsc(n,ep) computing probabilities of
uncorrected errors for blocks of odd lengths up to n and
plotting them using stem() into a graph.

4. Q: What would be the optimal length of the repetition code?
5. Q: What would be the code rate and transsmission speed?
6. Q: How does it correspond to Shannon limit theorem? Discuss

the difference.



Problem 2

Assume linear code with a generator matrix G.

1. Q: Given G, what is the length of plain text vector v?
2. Q: How are codewords computed?

w = vG

3. Q: How will you enumerate all codewords?

V =


0 0 · · · 0
0 0 · · · 1
...

...
. . .

...
1 1 · · · 1

 , C = VG

4. Write function [C,dmin]=linprop(G) that computes a binary
matrix C of all valid codewords for a linear code with generator
matrix G and determines the minimum code distance dmin.
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Problem 3

1. Hamming encoding and decoding


