Clarification of the cyclic code shift

We said that a for a cyclic code of length n the polynomial computations have to be carried out in arithmetics modulo $x^{n} \oplus 1 .{ }^{1}$ Recalling the definitions of modular arithmetics and congruence relations it is easy to demonstrate that

$$
x^{n} \oplus 1 \equiv 0\left(\bmod x^{n} \oplus 1\right) \Longleftrightarrow x^{n} \equiv 1\left(\bmod x^{n} \oplus 1\right)
$$

and therefore also

$$
\begin{align*}
x^{n+1} & \equiv x\left(\bmod x^{n} \oplus 1\right), \\
x^{n+2} & \equiv x^{2}\left(\bmod x^{n} \oplus 1\right), \\
\vdots & \tag{1}\\
x^{n+n} & \equiv 1\left(\bmod x^{n} \oplus 1\right) .
\end{align*}
$$

Taking a generic binary polynomial

$$
a(x)=a_{n-1} x^{n-1} \oplus a_{n-2} x^{n-2} \oplus \cdots \oplus a_{1} x \oplus a_{0}
$$

and multiplying it by x we get a shifted polynomial $a^{(1)}(x)$ as

$$
x \cdot a(x)=a_{n-1} x^{n} \oplus a_{n-2} x^{n-1} \oplus \cdots \oplus a_{1} x^{2} \oplus a_{0} x \equiv a^{(1)}(x)
$$

and as all computations are carried out modulo $x^{n} \oplus 1$ we have

$$
\begin{aligned}
a^{(1)}(x) & \equiv a_{n-1} \cdot x^{n} \oplus a_{n-2} x^{n-1} \oplus \cdots \oplus a_{1} x^{2} \oplus a_{0} x\left(\bmod x^{n} \oplus 1\right) \\
& \equiv a_{n-1} \cdot 1 \oplus a_{n-2} x^{n-1} \oplus \cdots \oplus a_{1} x^{2} \oplus a_{0} x\left(\bmod x^{n} \oplus 1\right) \\
& \equiv a_{n-2} x^{n-1} \oplus \cdots \oplus a_{1} x^{2} \oplus a_{0} x \oplus a_{n-1}\left(\bmod x^{n} \oplus 1\right) .
\end{aligned}
$$

In practice we can either directly replace the x^{n} by $1, x^{n+1}$ by x and so on as suggested by Equations (1), or we can add another $a_{n-1}\left(x^{n} \oplus 1\right)=a_{n-1} x^{n} \oplus a_{n-1}$ to the polynomial as the value of this expression is eqivalent (congruent) to zero in arithmetic modulo $x^{n} \oplus 1$.
Example 1. Let us first study the shift of a codeword

$$
v=(1101010), v(x)=x^{6} \oplus x^{5} \oplus x^{3} \oplus x
$$

of a binary cyclic code with $n=7$.
The shifted codeword shall be $v^{(1)}=(1010101)$. Multiplying $v(x)$ by x we get

$$
\begin{aligned}
v^{(1)}(x)=x \cdot v(x) & =x^{7} \oplus x^{6} \oplus x^{4} \oplus x^{2}\left(\bmod x^{7} \oplus 1\right) \\
& \equiv 1 \cdot\left(x^{7} \oplus 1\right) \oplus 1 \cdot x^{7} \oplus x^{6} \oplus x^{4} \oplus x^{2}\left(\bmod x^{7} \oplus 1\right) \\
& \equiv x^{7} \oplus x^{7} \oplus x^{6} \oplus x^{4} \oplus x^{2} \oplus 1\left(\bmod x^{7} \oplus 1\right) \\
& \equiv x^{6} \oplus x^{4} \oplus x^{2} \oplus 1\left(\bmod x^{7} \oplus 1\right) .
\end{aligned}
$$

The value of $v_{6}=1$ and the added $v_{6}\left(x^{7} \oplus 1\right)$ transforms the outlying x^{7} into 1 . We can see that the resulting codeword polynomial $x^{6} \oplus x^{4} \oplus x^{2} \oplus 1$ indeed corresponds to (1010101).

[^0]Example 2. Let us now have a look at a codeword that does not have the most-significant bit set, for example a codeword

$$
v(x)=(0101010)=x \oplus x^{3} \oplus x^{5}
$$

of a binary cyclic code again with $n=7$.
The shifted codeword shall be $v^{(1)}=(0010101)$. Multiplying $v(x)$ by x we get

$$
\begin{aligned}
v^{(1)}(x)=x \cdot v(x) & =x^{2} \oplus x^{4} \oplus x^{6} \\
& \equiv x^{2} \oplus x^{4} \oplus x^{6} \oplus 0 \cdot\left(x^{7}+1\right)\left(\bmod x^{7} \oplus 1\right) \\
& \equiv x^{2} \oplus x^{4} \oplus x^{6} \oplus 0 \cdot 0\left(\bmod x^{7} \oplus 1\right) \\
& \equiv x^{2} \oplus x^{4} \oplus x^{6}\left(\bmod x^{7} \oplus 1\right)
\end{aligned}
$$

In this case $v_{6}=0$ and the added $v_{6}\left(x^{7} \oplus 1\right)$ does not influence the shifted polynomial. The resulting codeword polynomial $x^{2} \oplus x^{4} \oplus x^{6}$ indeed corresponds to (0010101).

[^0]: ${ }^{1}$ In fact we are computing in modulo $x^{n}-1$, but remember that in our arithmetics $+1=-1$ and therefore $x^{n}-1=x^{n}+1$.

