Spectrum of periodical signals (Fourier analysis and synthesis)

Signals and codes (SK)

Department of Transport Telematics Faculty of Transportation Sciences, CTU in Prague

Exercise 2

Jindřich Sadil, Jan Přikryl K620SK

Exercise content

- Computing spectrum of periodical signals using Fourier series
 - Fourier analysis
 - Fourier synthesis
 - Plotting the spectrum
 - Influence of sampling

Exercise 02_1: Spectrum of a signal composed of sinusoids

Consider following continuous time signal with fundamental frequency $f_0 = 100 \text{ Hz}$

$$x(t) = 4 + 4\cos(2\pi \cdot f_0 t) + 3\cos\left(2\pi \cdot 2f_0 t + \frac{\pi}{4}\right) + 3\sin(2\pi \cdot 3f_0 t) + 2.5\cos\left(2\pi \cdot 5f_0 t - \frac{\pi}{4}\right)$$

- a) Perform Fourier analysis to obtain Fourier coefficients $\{ak\}$ from signal x(t)
- b) Perform Fourier synthesis to obtain signal $x^2(t)$ from Fourier coefficients $\{ak\}$
- c) Create MATLAB script that plots the following 4 plots adjacently
 - 1. Original signal x(t).
 - 2. Magnitudes of Fourier coefficients {*ak*} (i.e. Magnitude spectrum)
 - 3. Phases of Fourier coefficients {*ak*} (i.e. Phase spectrum)
 - 4. Synthesized signal $x^2(t)$
- d) Compare the results to the spectrum computed by hand using inverse Euler formulas
- e) Observe what happens, if the signal is not sufficiently sampled

%% defining parameters		Help:
<pre>n=5; % n>0, number of harmonics of Fourier series to approximate signal. f0=100; %fundamental frequency fs=???*f0; %sample frequency</pre>		<pre>1) figure('Position', [100, 100, 1300, 500]); %makes new figure defining position of its corners in brackets 2) subplot(1,4,1) %defining the matrix of plots of 1</pre>
		row and 4 columns, 1st plot is active
	Hints for implementing Fourier analysis:	<pre>plot(t,x); %to be drawn for active subplot</pre>
	- declare k=-n:n;	<pre>subplot(1,4,2) %defining the matrix of plots of 1</pre>
	<pre>- declare ak=zeros(1,length(k));</pre>	row and 4 columns, 2nd plot is active
	- use for cycle to compute ak for each k	<pre>stem(k*f0,ak_abs); %to be drawn for active subplot</pre>
	<pre>for i=1:length(k)</pre>	
	ak(i)=???;	
	end	i20SK 3

Exercise 02_2: Spectrum of the rectangular signal with parametric duty cycle (duty cycle in Czech: střída)

Consider continuous time signal with fundamental period $T_0 = 10$ ms defined as

$$x(t) = \begin{cases} 1 \dots 0 \le t < duty_cycle \cdot T_0 \\ 0 \dots duty_cycle \cdot T_0 \le t < T_0 \end{cases}$$

The values of *duty_cycle* are considered within interval < 0 , 1 >.

- a) Solve the subtasks a) to c) from the first exercise by modifying the respective Matlab code. Consider first 10 harmonics.
- b) Start with duty_cycle = 0.5; and compare the results with lecture 03, Ex.3_8
- c) Observe the results for the following values of duty_cycle
 - a) duty_cycle = 0; vs.duty_cycle = 1;
 - b) duty_cycle = 0.1; vs.duty_cycle = 0.9;
 - c) duty_cycle = 0.2; vs.duty_cycle = 0.8;

%% defining parameters

n=10; %n>0, number of harmonics of Fourier series to
approximate signal.
duty=0.5; % duty cycle of the rectangular signal
f0=100; %fundamental frequency
fs=???*f0; %sample frequency

Hint: defining rectangular signal
x=zeros(1,length(t)); %start with zeros
then overwrite "first part" of x with ones

Exercise 02_3: Spectrum of the rectangular signal with fixed t_{on} and increasing t_{off}

Consider continuous time signal with fundamental period $T_0 = t_{on} + t_{off} = 50$ ms defined as

$$x(t) = \begin{cases} 1 \dots 0.00 \le t < 0.01 \text{ s} \\ 0 \dots 0.01 \le t < 0.05 \text{ s} \end{cases}$$

The values of *duty_cycle* are considered within interval < 0 , 1 >.

- a) Solve the subtasks a) to c) from the previous exercise by modifying the respective Matlab code. Consider 20 harmonics.
- b) Perform Fourier analysis and synthesis with a modification: compute $T_0 \cdot \{a_k\}$ instead of $\{a_k\}$ alone. When you synthesize the signal, multiply by $\frac{1}{T_0}$. Results should have the same shape, but different magnitudes.
- c) Now let the same $t_{on} = 0.01$ s and increase t_{off} from 0.04 s to 0.09. Modify the number of considered harmonics like $n=round(n*T_0/0.05)$;
- d) Do the same with $t_{off} = 0.19$ s. You should see further spectrum densification.
- e) Note: now imagine $t_{off} \rightarrow \infty$, you would obtain spectrum of nonperiodic rectangular pulse and the formula for Fourier series

$$T_0\{a_k\} = \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} f(t) e^{-j2\pi f_0 kt} dt$$
 will change into

Fourier transform $\{F(f)\} = \int_{-\infty}^{+\infty} f(t) e^{-j2\pi ft} dt$

```
%% defining parameters
ton=0.01; % first part of rectangle waveform - time of ones
toff=0.04; % second part of rectangle waveform - time of zeros
fs=1e6;
n=20; %N>0, number of spectral lines on each side for original waveform with toff=0.04.
```

Exercise 02_4: Spectrum of the unknown measured data

Consider the following measured data acquired with the sample frequency fs = 2.5 kHz:

x=[15,17.163,21.501,23.556,20.713,14.635,9.7365,9.1036,11.653,13.164,10.225,3.4337,-3.1257,-5.6373,-4.0616,-2.1353,-3.8667,-9.7796,-16.393,-19.422,-17.725,-14.339,-13.635,-17.243,-22.521,-25,-22.521,-17.243,-13.635,-14.339,-17.725,-19.422,-16.393,-9.7796,-3.8667,-2.1353,-4.0616,-5.6373,-3.1257,3.4337,10.225,13.164,11.653,9.1036,9.7365,14.635,20.713,23.556,21.501,17.163,21.501,23.556,20.713,14.635,9.7365,9.1036,11.653,13.164,10 .225,3.4337,-3.1257,-5.6373,-4.0616,-2.1353,-3.8667,-9.7796,-16.393,-19.422,-17.725,-14.339,-13.635,-17.243,-22.521,-25,-22.521,-17.243,-13.635,-14.339,-17.725,-19.422,-16.393,-9.7796,-3.8667,-2.1353,-4.0616,-5.6373,-3.1257,3.4337,10.225,13.164,11.653,9.1036,9.7365,14.635,20.713,23.556,21.501,17.163,15,17.163,21.501,23.556,20.713,14.635,9.7365,9.1036,11.653,13.164,10 .225,3.4337,-3.1257,-5.6373,-4.0616,-2.1353,-4.0616,-5.6373,-3.1257,3.4337,10.225,13.164,11.653,9.1036,9.7365,14.635,20.713,23.556,21.501,17.163,15,17.163,21.501,23.556,20.713,14.635,9.7365,9.1036,11.653,13.164,10 .225,3.4337,-3.1257,-5.6373,-4.0616,-2.1353,-3.8667,-9.7796,-16.393,-19.422,-17.725,-14.339,-13.635,-17.243,-22.521,-25,-22.521,-17.243,-13.635,-14.339,-17.725,-19.422,-16.393,-9.7796,-3.8667,-2.1353,-4.0616,-5.6373,-17.725,-19.422,-16.393,-9.7796,-3.8667,-2.1353,-4.0616,-5.6373,-17.725,-19.422,-16.393,-9.7796,-3.8667,-2.1353,-4.0616,-5.6373,-17.725,-19.422,-16.393,-9.7796,-3.8667,-2.1353,-4.0616,-5.6373,-17.725,-19.422,-16.393,-9.7796,-3.8667,-2.1353,-4.0616,-5.6373,-17.725,-19.422,-16.393,-9.7796,-3.8667,-2.1353,-4.0616,-5.6373,-17.725,-19.422,-16.393,-9.7796,-3.8667,-2.1353,-4.0616,-5.6373,-17.725,-19.422,-16.393,-9.7796,-3.8667,-2.1353,-4.0616,-5.6373,-3.1257,3.4337,10.225,13.164,11.653,9.1036,9.7365,14.635,20.713,23.556,21.501,17.163]

a) Plot the measured data. How many fundamental periods do you observe?

- b) Find the spectrum of the signal.
- c) What happens if you would consider first 50 harmonics?

%% defining parameters

fs=2500;

Help: after you have solved subtask a), you can			
1) use			
<pre>x=x(1:end/noT); %noTnumber of fundamental periods</pre>			
t=t(1:end/noT);			
to reduce the size of $x \hspace{0.1 cm} \text{and} \hspace{0.1 cm} t \hspace{0.1 cm}$ to one period only			
2) then use the previous scripts to perform Fourier analysis and synthesis			