
TIMe TIMe Electronic Textbook
12 Tutorial on UML
Introduction .2
Overview of UML .3
Diagrams in UML .3
Class diagrams .4
Use case diagrams .8
Sequence diagrams. .9
Collaboration diagrams .10
Statechart diagrams .11
Implementation diagrams. .13
UML by example .16
Domain analysis object modeling .16
System analysis object modeling .17
Design object modeling .17
List of figures .20
List of definitions .21

Tutorial on UML
Tutorial on UML 12 - 1 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Introduction TIMe12
Introduction

Unified Modeling Language (UML) [147] is a language or notation intended for analys-
ing, describing and documenting all aspects of a software intensive system. It is a further
development from OMT [165], Booch [20], OOSE [111] and others methods and nota-
tions like David Harel’s Statecharts [76].

The structure of this tutorial is as follows:

• Overview of UML (p.12-3) gives an overview of the main elements in UML.

• UML by example (p.12-16) explains the use of UML through an example.
Tutorial on UML TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1612 - 2

Overview of UML
Diagrams in UML 12TIMe
Overview of UML

UML can be used as a notation for Object Model in analysis and design when the for-
mality of the SDL Object Model is not wanted. With UML you can represent different
structures in a consistent and coherent way using object-oriented principles similar to
those of SDL.

We use UML when SDL is not appropriate. Because it is less formal it can be used at an
early stage to structure and analyse the concepts of an application domain before the
functional design is made. In addition, it can be used to supplement SDL in the area of
object modeling. SDL, for instance, does not support relations. The Object Models in
UML can help you in your way from the description of the informal needs to a formal
functional design in SDL.

This section will give a short introduction to the main elements and diagrams in UML.

Diagrams in UML

UML have several different types of diagrams that can be used to describe a model from
different point of views. These are:

• Class diagrams
A Class diagram describes parts of the models static structure.

• Use Case diagrams
The Use Case diagram identifies the main system functions and shows the relation-
ship between actors and the main system functions.

• Sequence diagrams
This diagram shows interaction as a set of messages exchanged between objects.

• Collaboration diagrams
A collaboration diagram show interaction organized around objects and their links to
each other.

• Statechart diagrams
Statechart diagrams describes the behaviour to the instances of a class or the imple-
mentation of a class’ operation.

• Activity diagrams
A activity diagram is a special form for state diagram where the states represent per-
formance of operations and the transitions are triggered by the completion of the
operations.

• Implementation diagrams
The implementation diagrams component diagram and deployment diagram,
describe source code structure and run-time implementation structure.
Tutorial on UML 12 - 3 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Overview of UML
Class diagrams

TIMe12

Class diagrams

Class
diagram

Class diagrams describe the static structure to a part of a system. The diagram does not
only show classes connected by static relationships (associations), but also packages,
interfaces, objects and links etc. Specification of behaviour of a class’ objects is not sup-
ported - this is regarded as part of property modeling and described in terms of
functional roles by means MSCs. During design the behaviour of classes will corre-
spond to behaviour of SDL processes and may then be defined by process graphs.

Class

Classes A class describes a set of objects with similar structure, behavior and relationships.
Classes are defined by a set of attributes and operations in a class diagram. The class is
shown as a rectangle with tree compartments. Both the attribute and operation compart-
ments can be suppressed as shown in Figure 12-1 (p.12-4).

Figure 12-1: A class in UML

Open figure

Attribute An attribute describes a range of values that instances of the class may hold. It is defined
by a name and a type. Additionally, an attribute can have properties like visibility (to
other classes), multiplicity, an initial value and a property-string that indicates property
values.

visibility name [multiplicity] : type-expression = initial-value {property-string}

Everything but the name may be suppressed. The type-expression can be either a class
(that is a user defined type) or a predefined simple type like Integer or String.

Figure 12-2: Attribute specification

Open figure

Operation Operations are specified by a name and a optional list of arguments.

visibility name (parameterlist) : return-type-expression {property-string}

AccessPoint

User

Name: string
Number: Integer
Level: Integer

Access Zone

Name: string
Level: Integer

Access Point

Name: string
Number: Integer
Access: key type
Tutorial on UML TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1612 - 4

Overview of UML
Class diagrams 12TIMe
When the return-type-expression is left out the operation does not return a value. The
visibility and property-string can be suppressed.

Figure 12-3: Specification of operations

Open figure

Stereotype A stereotype is a classification element and is used to indicate a difference in meaning
or use between two elements with the same structure.

Objects An object is an instance of a class. In UML an object is represented by a rectangle with
one or more compartments (up to four compartments). The top compartment shows the
name of the object and the name of the class. The other compartments can be
suppressed.

Figure 12-4: An object in UML

Open figure

An object represents a particular instance of a class and the same notation is used in col-
laboration diagrams to represent roles because roles have instance-like characteristics.

Object sets Sets of objects can only be displayed through cardinalities of associations. Cardinality
on association ends only tells how many instances that may be associated with a given
number of source instances across the given association. It is not possible to specify how
many instances a class may have. This can only be done in a note.

Relationship types

In UML many kinds of relationships can be modeled. The main types are shown in Fig-
ure 12-5 (p.12-6).

Door

status : String = closed

Open()
Close()

D : Door
Tutorial on UML 12 - 5 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Overview of UML
Class diagrams

TIMe12

Figure 12-5: Relationship types in UML

Open figure

Association An association defines a relationship between two or more classes. Binary associations
are relationships between exactly two classes and a n-ary association is an association
between three or more classes. The association may indicate that the classes communi-
cate, but this is not necessarily true.

Since binary associations are easier to handle than n-ary associations it is generally rec-
ommended to avoid using n-ary associations.

Aggregation and composition

models the whole/part relationship, that is objects as parts of other objects. In UML there
are two types of aggregation: aggregation and composition.

Aggrega-
tion

An aggregation (also called relation aggregation) is a specialised association. It is spec-
ified by an aggregation association with a hollow diamond. A part in this type of
aggregation can participate in several aggregates.

Composi-
tion

Composition (or “real aggregation”) is a stronger form of aggregation where the parts
can not exist without the whole. The parts can only participate in one composite. Com-
position is shown as an association with a filled solid diamond nearest the class
constituting the whole, or alternatively using the graphically nested form. The nested
notation for composite aggregation is shown in Figure 12-6 (p.12-6).

Figure 12-6: Composite aggregation in UML

Open figure

The multiplicity mark is shown in the upper right corner of the symbol for the part. If it
is omitted then the default multiplicity is many.

ClassA ClassB

Whole Part

DependentPart RequiredPart

Superclass Subclass

relatedAssociation:

Aggregation:

Dependency:

Generalisation:

AccessPoint

Door

User Panel APC:

Controller

Central-
Unit

1

1

1

Tutorial on UML TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1612 - 6

Overview of UML
Class diagrams 12TIMe
Objects outside the composite can have relations and connections to part objects, and
these relations and connections are specific for these objects being part objects. The
same relations and connections will not be valid for objects of these classes (here Panel,
Door and Controller) used in other situations.

A nested element may have a role name within the composition, the syntax being “role-
name : classname”, e.g. APC : Controller in Figure 12-6 (p.12-6).

Dependency

Depen-
dency

A dependency is a relationship that indicates that a model element is in some way depen-
dent of another model element. All model elements must exist on the same level of
abstraction or realisation.

Figure 12-7 (p.12-7) shows an example that class A uses class B. The dependency asso-
ciation in the figure below is labelled with a «uses» stereotype. This dependency states
that an object of class A requires the presence of an object of class B for its correct
implementation or functioning.

Figure 12-7: Dependency

Open figure

Generalisation

Generalisa-
tion

A generalisation is a relationship between a more general element and a more specific
element. Generalisation is a mechanism for structuring sets of classes with similar prop-
erties into general and specialised classes, as shown below in Figure 12-8 (p.12-7).

Figure 12-8: Possible classification of Access Points according to logging and blocking
functionality

Open figure

It is possible in UML for a specialised class (subclass) to have more than one superclass,
while in SDL only one supertype is allowed. Therefore, to achieve a smoother transition
between the UML-model and SDL-model, it is recommended not to use multiple
inheritance.

A B
«uses»

BlockingAccessPoint

AccessPoint

LoggingAccessPoint
Tutorial on UML 12 - 7 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Overview of UML
Use case diagrams

TIMe12

Use case diagrams

Use case
diagram

A use case diagram shows the relationships among actors and use cases. An actor is a
role of an object or objects outside the system that interacts directly with it in a use case.
The actor has class-like properties. A use case is an unit of functionality of the system
or a class. One physical object may have different roles and therefore be modeled by
several actors. There are three types of use case relationships:

• Communicates
This relationship shows participation of an actor in a use case. This relationship is
shown as a solid line between the actor and a use case, and is the only relationship
between actors and use cases.

• Extends
An extends relationship from use case A to use case B indicates that an instance of
use case B may include the behaviour of use case A. This is shown as a generalization
arrow from the use case providing the extension to the base use case. The arrow is
labeled with the stereotype «extends».

• Uses
A uses relationship from use case A to use case B indicates that an instance of the use
case A will also include the behaviour specified by use case B. This is shown as a
generalization arrow from the use case doing the use to the use case being used. The
arrow is labeled with the stereotype «uses».

Use cases in UML are instantiated in collaborations or sequence diagrams.

Figure 12-9 (p.12-8) shows a use case example from the access control system.

Figure 12-9: Use case example of access control system

Open figure

Access Control

«uses»

«uses»

Enter
access zone

Request
Access

Unlock
Door
Tutorial on UML TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1612 - 8

Overview of UML
Sequence diagrams 12TIMe
Sequence diagrams

Sequence
diagram

UML sequence diagram shows simple interactions between objects arranged in a time
sequence. It shows the objects with their lifeline and the exchange of messages between
objects. It may also show the creation of new objects.

The sequence diagram shows if the object is activated with a rectangular lifeline. When
an object is not active, just existing, it has a dashed lifeline. An X at the end of the life-
line denotes that the object cease to exist, and can not be activated again.

The lifeline kan be split into two or more concurrent lifelines. Each lifeline corresponds
to a conditional branch in the message flow. The separate lifeline can merge together at
some later point in time.

Along the time axis timing marks can be specified. These timing marks can be used to
give constraints, like specify the maximum time a message exchange may take.

Conditions for sending a message is given in braces in the sequence diagram.

Message format:

[condition] message-name (parameter-list)

Figure 12-10 (p.12-9) shows an example of an interaction between a user and parts of
the access control system in UML. Figure 12-11 (p.12-10) show the same interaction in
a MSC diagram. In UML you have no timer concept, which means that you have to
model a timer explicitly as an object.

Figure 12-10: Sequence diagram showing access to an access zone

Open figure

V:
Validation

AP:
AccessPoint

D:
Door

Door:
Timer

Card In

‘Enter PIN’

PIN
Authenticate(cid,pin)

AuthenticateRep(uid)
set(now+10)

Unlock

Lock

isOpen

isClosed

set(now+30)

reset
Tutorial on UML 12 - 9 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Overview of UML
Collaboration diagrams

TIMe12

Figure 12-11: MSC showing access to an access zone

Open figure

Collaboration diagrams

Collabora-
tion

A collaboration is a set of objects and relationships in a particular context. Collaboration
diagrams are a static construct to show objects and messages involved in accomplishing
a purpose or a set of purposes. Since time is not shown as a separate dimension in the
collaboration diagram, the message sequences has to be determined by sequence
numbers.

Message format:

precondition / sequence-number * [expression] : returnvalue :=
message-name (parameter-list)

Figure 12-12 (p.12-11) below gives an example of a collaboration diagram. The figure
shows sending of signals between some objects in the Access Control system when a
user wants to enter an access zone.

User AccessPoint Validation Door

door

isOpen

door
isClosed

lock

AuthenticateRep(uid)

msc User_access

Card in

‘Enter PIN’

PIN
Authenticate(cid,pin)

unlock
Tutorial on UML TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1612 - 10

Overview of UML
Statechart diagrams 12TIMe
Figure 12-12: A collaboration diagram showing user access

Open figure

Collaboration diagrams can be used to illustrate signal/message exchange between
objects in the system. In order to simplify the diagram and show all messages that may
be passed between the objects, the sequence numbering may be skipped.

Statechart diagrams

Statechart A statechart diagram is a state machine that describes the behaviour to an object or the
implementation of an operation. The diagram show:

• the states of an object (or interaction)

• an object’s response to stimuli (events) in terms of actions and responses

A statechart is attached to a class or a method. Statecharts can be used in the same way
as SDL process graphs, to describe the behaviour of the objects of a class.

State

State A state is a condition during the life of an object which:

• satisfies some condition,

• performs some action, or

• waits for some event.

An object waits in a state for a finite (non-instantaneous) amount of time.

A state can be decomposed into either concurrent substates or mutually exclusive dis-
joint substates but not both.

A state is shown as a rectangle with rounded corners. The state has one name compart-
ment that may be empty. It may also have a compartment for internal actions. This
compartment may be omitted. Figure 12-13 (p.12-12) shows the four types of states in
UML.

:Panel

:Door-

:User-
Server

Server

:Central-
Unit

1: CardID, PIN

1.1:Code(CID,PIN)

1.2:Validate(CID,PIN)

1.4:Unlock

1.5:Unlock

1.3:OK
Tutorial on UML 12 - 11 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Overview of UML
Statechart diagrams

TIMe12

Figure 12-13: States in UML

Open figure

Actions

Action Internal actions or activities are performed in response to events received while the
object is in a state, without changing state. Actions are atomic and non-interruptible, and
take an “insignificant” amount of time.

event-name (argument-list) [guard] / action-expression

Action expressions may use attributes and links of the owning object and parameters of
incoming transitions.

The three following special actions represent reserved words that cannot be used for
event names:

• entry – an atomic action performed on entry to the state.
entry / action-expression

• exit – an atomic action performed on exit from the state.
exit / action-expression

• do – an invocation of a nested state machine.
do / state-machine-name (argument-list)

Event

Event An event is a “noteworthy occurrence” that might trigger a transition. An event has
scope within the package it appears in, and may be used in any state diagrams for classes
that have visibility inside the package. This means that an event is not local to a single
class.

There are four event types:

• SignalEvent – explicit signal from an object

• CallEvent – operation called by an object:
event-name (parameter-list)

• ChangeEvent – condition becomes true:
when (boolean-expression)

• TimeEvent – passage of time after some event (entering a state):
after (time-expression)

ConcurrentA

ConcurrentB

Simple

SequentialA SequentialB

CompositeA

CompositeB

Action
state
Tutorial on UML TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1612 - 12

Overview of UML
Implementation diagrams 12TIMe
Transition

Transition A transition means that an object would leave one state and enter a new state when an
event occurs if specified conditions are satisfied. During the transition actions can be
performed and messages may be sent.

Transitions can be complex, that is they may have multiple source states and target
states.

A transition is shown as a solid arrow between two states. Actions during the transition
is specified in a transition string with the following format:

event-name (argument-list) [guard] / action-list ^ send-clause

The send-clause has the following format:

destination-expression . message-name (argument-list)

The destination-expression can identify several objects, and thus the message can be sent
to a set of objects.

Implementation diagrams

Implementation diagrams show aspects of implementation, including source code struc-
ture and run-time implementation structure. There are two types of implementation
diagrams:

• Component diagram

• Deployment diagram

Component diagrams

Component A component diagram show the structure of the software components. A component is
a reusable part that provides the physical packaging of model elements. The diagram
show only component types and node types. Instances must be shown in a deployment
diagram.

The component diagram consists of components connected by dashed-arrow depen-
dency relationships or by physical containment representing composition relationship.
Figure 12-14 (p.12-13) shows a component diagram of the Access Control System.

Figure 12-14: Component diagram

Open figure

AccessPoint

CentralUnit Validate
Tutorial on UML 12 - 13 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Overview of UML
Implementation diagrams

TIMe12
Deployment diagrams

Deploy-
ment
diagram

Deployment diagrams show the configuration of run-time processing elements and the
software components, processes and objects that lives on them. Components that don’t
exist as run-time entities are not shown in the deployment diagrams.

Node A node is a run-time physical object that represents a processing resource. This includes
computing devices as well as human resources or mechanical processing resources.
Nodes may be represented as type and as instances. A node can contain component
instances, which indicates that the components lives or runs on the node. Components
in a deployment diagram may contain objects. Dashed-arrow dependencies connects
components in the deployment diagram.

The deployment diagram shows nodes that are connected by communication associa-
tions. Migration between nodes or components can be shown with help of the
dependency relationship and the stereotype «becomes». Figure 12-15 (p.12-14) shows
a deployment diagram.

Figure 12-15: Deployment diagram

Open figure

Model management

Package The main model structuring mechanism in UML is the package element. A package is a
grouping of model elements, like classes, objects, associations, use cases, packages etc.
Elements inside a package is owned by the package. The package define a name scope
for the elements it contains and all the elements inside a package must have unique
names. A package can be basis for storage, access and configuration control.

An example of a package is shown in Figure 12-16 (p.12-15). In the figure below the
dashed arrow indicates that model elements in package AccessPoint uses or are related

:AccessPoint

APno1:AccessPointNode

:CentralUnit Validate

«database»
:AccessDB

CU:CentralUnitNode
Tutorial on UML TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1612 - 14

Overview of UML
Implementation diagrams 12TIMe
in some way to model elements in package CentralUnit.

Figure 12-16: A package containing other packages

Open figure

Communication in UML

In UML it is, as with OMT, difficult to explicitly show communication between entities
in the system. One way to show communication between two classes is to use the navi-
gability association between the communicating classes. The disadvantage is that you
can not see the type of messages that can be passed between the classes.

To show all signals/messages that are communicated you can use collaboration dia-
grams without sequence numbering. This way you get a sketch over the signals in the
system. The disadvantage with the collaboration diagram is that you can only see objects
in the system not classes.

Access-
Point

+Central-
Unit

Inter-
actions

Context

«toplevelPackage»
AC-System
Tutorial on UML 12 - 15 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

UML by example
Domain analysis object modeling

TIMe12
UML by example

This section explain the use of UML in TIMe by means of an example for both domain
analysis object modeling and design object modeling applied to the Access Control Sys-
tem example. For a short introduction to the example, see First Introduction to the
example.

Domain analysis object modeling

The main objective of domain object modeling is to improve understanding and com-
munication by rigorously describing how concepts and phenomena in the domain are
related. This is done by defining objects and classes that represent the domain phenom-
ena and concepts. The object model also serves the purposes of

• giving more precise meaning to terms in the Domain Dictionary;

• providing references for property models;

• clarifying the basic needs existing in the domain.

In addition it should promote reuse by describing objects and classes that are common
to most systems in the domain.

Based on a domain statement and a dictionary of terms, class/object diagrams which
identifies the concepts and entities in the domain are made. One such domain diagram
is illustrated in Figure 12-17 (p.12-16).

Figure 12-17: The access control domain

Open figure

Use cases are used to identify the main system functions. Figure 12-9 "Use case example
of access control system" (p.12-8) shows a possible use case for the Access Control Sys-
tem. The use cases are used as a basis to make interactions, that is sequence or
collaboration diagrams. Figure 12-10 "Sequence diagram showing access to an access
zone" (p.12-9) shows the use case described in Figure 12-9 (p.12-8) as an interaction in
a sequence diagram. Figure 12-12 "A collaboration diagram showing user access" (p.12-
11) shows the use case in Figure 12-9 (p.12-8) as an interaction in a collaboration
diagram.

m
ay enter

AccessZone

AccessPoint User
may enter
through

*

1..*

*

1,2

1..*
1..*

bounded by
Tutorial on UML TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1612 - 16

UML by example
System analysis object modeling 12TIMe
Contents of objects is only specified if it is a well-established fact in the domain; other-
wise it is deferred to design object modeling. If contents of objects is to be specified,
then composition can be used in order to specify a tighter part/whole relation than
obtained with aggregation.

System analysis object modeling

System analysis involves the system as an object and considers its use environment. A
system analysis produces a specification that covers those aspects of a system that are
relevant for its external representation and use.

This is in TIMe done by so-called context specifications. Context specification can be
made for any class of object, but for system analysis, the context of the system is the
focus.

UML is used for this purpose by selecting the system as the primary class and then only
consider classes of objects in the environment that the system has relations to or com-
municates with. Figure 12-18 (p.12-17) is an example. The communication is shown
with help of the navigability concept in UML.

Figure 12-18: The access system context

Open figure

Sometimes parts of the contents of the system object may be important, the parts may
then be included in the system specification.

Design object modeling

In design object modeling it is especially the aggregation (composition) support of UML
that is used in order to specify the contents of both the system and its part objects.

Applied to the system as such, aggregation of UML gives the contents specification in
Figure 12-19 (p.12-18). Note that relations and connections are still used, even though
we now have individual objects or object sets as endpoints.

EntryControl

Access Zone

Using

AC-SystemUser

Card

ExitControl

owns

entering

Validating
Opera-

Door

**

*

*
*

0..1

tor

controls

configures
Tutorial on UML 12 - 17 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

UML by example
Design object modeling

TIMe12

Figure 12-19: System Context/Design Outline

Open figure

This design may be continued. Each access point is designed to contain three objects,
one for handling the panel of the access point, one for handling the central unit and one
for handling the door. This is specified by using composition, but now applied to the
class AccessPoint, see Figure 12-20 (p.12-18).

Figure 12-20: AccessPoint defined by composition

Open figure

Figure 12-21 (p.12-19) and Figure 12-22 (p.12-19) show two statecharts for the Access-
Point’s Controller class. Figure 12-21 (p.12-19) shows the behaviour of the Controller
class at an general level. The state “Validate access code” is a composite state. When the
state machine enters this state the state machine “Validate PIN” (shown in Figure 12-22
(p.12-19)) is activated.

m=100

may
accept

1

AC-System

User

may use

Autho-
rizer

Central
Unit

* 1

*

Access-
Point

m

AccessPoint

Door

User Panel Con-
troller

Central-
Unit

1

1

1

Tutorial on UML TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1612 - 18

UML by example
Design object modeling 12TIMe
Figure 12-21: Statechart for Access Control system

Open figure

The state machine “Validate PIN” is shown in Figure 12-22 (p.12-19). Here it is shown
explicitly that the signals/messages Authenticate and Authorize are sent to another
object, namely the Validation object.

Figure 12-22: State machine for Validate PIN

Open figure

Wait for
card entry

Validate
access code
do/Validate

PIN (cid)

Opening
Door

Closing
Door

Card In/
register cid

pin [invalid]/
spit out card

pin[valid]/
unlock door,
spit out card

Door opened/
lock door

Door closed

Wait for
digits

Wait for
Authenti-

digit(n)[complete]/

Wait for
Authorization

digit(n)[incomplete]/
pin.append(n)

pin.append(n),
^Validation.Authenticate(cid,pin)

cation

Validate PIN

AuthenticateRep(uid)/
^Validation.Authorize(uid)

OK
NOK

Validation

Authorize(uid)

Authenticate(cid,pin)
Tutorial on UML 12 - 19 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

List of figures
Design object modeling

TIMe12
List of figures

A class in UML .4

Attribute specification .4

Specification of operations .5

An object in UML .5

Relationship types in UML .6

Composite aggregation in UML .6

Dependency .7

Possible classification of Access Points according to logging and
blocking functionality .7

Use case example of access control system. .9

Sequence diagram showing access to an access zone .10

MSC showing access to an access zone. .10

A collaboration diagram showing user access .11

States in UML .12

Component diagram. .14

Deployment diagram .14

A package containing other packages .15

The access control domain. .16

The access system context .17

System Context/Design Outline. .18

AccessPoint defined by composition .18

Statechart for Access Control system .19

State machine for Validate PIN .19
Tutorial on UML TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1612 - 20

List of definitions
Design object modeling 12TIMe
List of definitions

Stereotype . 21

Stereotype

A stereotype is a classification element and is used to indicate a difference in meaning
or use between two elements with the same structure. It is represented using the symbol
for the base element and placing a keyword string above the name of the base element
(if any). The keyword string is the stereotype’s name within a pair of guillemets (« »).
The base element can be a class, association, refinement, constraint etc.

User
«environment»
Tutorial on UML 12 - 21 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

List of definitions
Design object modeling

TIMe12
Tutorial on UML TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1612 - 22

	Introduction
	Overview of UML
	Diagrams in UML
	Class diagrams
	Class
	Figure 12-1: A class in UML
	Figure 12-2: Attribute specification
	Figure 12-3: �Specification of operations
	Figure 12-4: An object in UML�
	Relationship types
	Figure 12-5: Relationship types in UML
	Aggregation and composition
	Figure 12-6: �Composite aggregation in UML
	Dependency
	Figure 12-7: Dependency
	Generalisation
	Figure 12-8: Possible classification of Access Points according to logging and blocking functiona...

	Use case diagrams
	Figure 12-9: �Use case example of access control system

	Sequence diagrams
	Figure 12-10: �Sequence diagram showing access to an access zone
	Figure 12-11: �MSC showing access to an access zone

	Collaboration diagrams
	Figure 12-12: �A collaboration diagram showing user access

	Statechart diagrams
	State
	Figure 12-13: States in UML
	Actions
	Event
	Transition

	Implementation diagrams
	Component diagrams
	Figure 12-14: Component diagram
	Deployment diagrams
	Figure 12-15: �Deployment diagram
	Model management
	Figure 12-16: A package containing other packages
	Communication in UML

	UML by example
	Domain analysis object modeling
	Figure 12-17: The access control domain

	System analysis object modeling
	Figure 12-18: The access system context

	Design object modeling
	Figure 12-19: System Context/Design Outline
	Figure 12-20: AccessPoint defined by composition
	Figure 12-21: �Statechart for Access Control system
	Figure 12-22: �State machine for Validate PIN

	List of figures
	List of definitions
	Stereotype

